科技日报昆明9月17日电 (记者赵汉斌)记者17日从中国科学院云南天文台了解到,该台恒星物理研究团组和天文技术实验室近期基于机器学习,合作开发了快速计算恒星—行星系统潮汐演化的方法。相对于传统的理论模型计算,新方法的计算速度可提高四个数量级。相关研究成果在线发表于国际期刊《皇家天文学会月报》。
由恒星和行星组成的类双星系统的演化过程,涉及恒星和行星自身的演化、恒星和行星的物质损失、恒星和行星之间的潮汐演化。潮汐演化不仅改变了恒星的自转,也调整了行星的轨道参数,比如偏心率和轨道间距。传统方法通过在恒星演化中添加潮汐演化的计算模块,从而得到其潮汐演化状态,但计算效率较低,不利于将潮汐演化整合到恒星和行星组成的类双星系统演化中。
鉴于此,云南天文台博士生郭帅帅和研究员季凯帆、郭建恒等人,基于机器学习的方法,在一个包括了恒星质量、金属丰度、初始自转周期、行星质量、轨道半长轴等的参数空间中,计算了15000余条潮汐演化的模型。随后,他们对这些演化模型作了复原,得出不同年龄条件下恒星的有效温度、半径、自转周期和行星的轨道周期等数据。
依据恒星—行星系统潮汐演化特征,研究人员进一步将其分为6个类型。他们发现,除了恒星自转和行星轨道周期几乎一致的情况外,机器学习方法得到的结果,可在很大程度上复现理论计算所得的恒星—行星潮汐演化状态。
此项研究提供了可以便捷地将潮汐演化整合到恒星—行星系统演化中的方式,有助于理解此类系统的基本物理机制,也为分析该系统在不同迁移状态下的演化特征奠定了基础。
北疆新闻:内蒙古自治区重点新闻网站(客户端),内蒙古出版集团新华报业中心旗下国家互联网新闻信息采编发布服务一类资质网站(客户端)。
北疆新闻版权与免责声明:
一、凡本站中注明“来源:北疆新闻”的所有文字、图片和音视频,版权均属北疆新闻所有,转载时必须注明“来源:北疆新闻”,并附上原文链接。
二、凡来源非北疆新闻的新闻(作品)只代表本网传播该消息,并不代表赞同其观点。
如因作品内容、版权和其它问题需要同本网联系的,请在见网后30日内进行,联系邮箱:bjwmaster@163.com。
版权声明:北疆新闻版权所有,未经书面授权,不得转载或建立镜像,违者依法必究。 本站违法和不良信息举报电话:15648148811蒙ICP备16001043号-1
Copyright © 2016- 北疆新闻网 All Rights Reserved互联网新闻信息服务许可证:15120200009-1蒙公网安备:15010502001245